1.

The solution of the differential equation `x(dy)/(dx)+y=x^(3)y^(6)`, isA. `x^(7)=5y^(5)+Cx^(2)y^(5)`B. `2x^(7)=5y^(5)+Cx^(2)y^(5)`C. `5x^(7)=2y^(5)+Cx^(2)y^(5)`D. `2x^(7)=5y^(5)+Cx^(5)y^(2)`

Answer» Correct Answer - B
The given differential equation can be written as
`(1)/(y^(6))(dy)/(dx)+(1)/(xy^(5))=x^(2)`
Let `y^(-5)=v`, Then,
`-5y^(-6)(dy)/(dx)=(dv)/(dx)rArry^(-6)(dy)/(dx)=-(1)/(2)(dv)/(dx)`
Substituting there values in the given differential equation, we get
`-(1)/(5)(dv)/(dx)+(1)/(x)v=x^(2)`
`rArr" "(dv)/(dx)-(5)/(x)v=-5x^(2)" ...(i)"`
This this the standard form of the linear differential equation having integrating factor
`"I.F"=e^(int-(5)/(x)dx)=e^(-5logx)=(1)/(x^(5))`
Multiplying both sides of (i) by I.F. and integrating w.r.t. x, we get
`v-(1)/(x^(5))=int-5x^(2).(1)/(x^(5))dx`
`rArr" "(v)/(x^(5))=(5)/(2)x^(-2)+C`
`rArr" "y^(-5)x^(5)=(5)/(2)x^(-2)+C,` which is the required solution.


Discussion

No Comment Found

Related InterviewSolutions