1.

The solution of the differential equation ` y - x ( dy)/(dx) = a ( y^(2) + dy/dx)` isA. `y = C (x+a)(1-ay)`B. `y = C( x+a) (1+ay)`C. `y = C(x-a)(1+ay)`D. None of these

Answer» Correct Answer - d
Given , ` y - x (dy)/(dx) = a (y^(2) +dy/dx)`
` rArr (dy)/(dx) (a+x) = y - ay^(2) `
On integrating both sides , we get
` rArr int (1/y +a/(1-ay))dy = int (dx)/(a+x)`
` rArr log y - log (1-ay) = log (a+x) +log C`
` rArr log y = log (1- ay) (a+x)C`
` rArr y = C ( 1-ay ) (a+x)`


Discussion

No Comment Found

Related InterviewSolutions