1.

The solution of `x(dy)/(dx)+y=e^(x)"is"`A. `y=(e^(x))/(x)+(k)/(x)`B. `y=(e^(x))/(x)+(k)/(x)`C. `y=xe^(x)+k`D. `x=(e^(y))/(y)+(k)/(y)`

Answer» Given, that `x(dy)/(dx)+y=e^(x)`
`Rightarrow (dy)/(dx)+(y)/(x)=(e^(x))/(x)`
Which is linear differential equation.
`IF=e^(int(1)/(2)dx)=e^(logx)=x`
The general solution is `y=int((dx)/(x).x)dx`
`Rightarrow y.x.=inte^(x)dx`
`Rightarrow y.x=e^(x)+k`
`Rightarrow y=(e^(x))/(x)+(k)/(x)


Discussion

No Comment Found

Related InterviewSolutions