InterviewSolution
Saved Bookmarks
| 1. |
The solution of `x(dy)/(dx)+y=e^(x)"is"`A. `y=(e^(x))/(x)+(k)/(x)`B. `y=(e^(x))/(x)+(k)/(x)`C. `y=xe^(x)+k`D. `x=(e^(y))/(y)+(k)/(y)` |
|
Answer» Given, that `x(dy)/(dx)+y=e^(x)` `Rightarrow (dy)/(dx)+(y)/(x)=(e^(x))/(x)` Which is linear differential equation. `IF=e^(int(1)/(2)dx)=e^(logx)=x` The general solution is `y=int((dx)/(x).x)dx` `Rightarrow y.x.=inte^(x)dx` `Rightarrow y.x=e^(x)+k` `Rightarrow y=(e^(x))/(x)+(k)/(x) |
|