InterviewSolution
Saved Bookmarks
| 1. |
The speed `v` of a satellite moving in a circular orbit around the earth depends on the gravitational constant `G`, mass of the earth `m_(e)` and radius of circular orbit `r`. Estabish the relation using dimensions. |
|
Answer» `v = fn (G, m_(e), r)` `v prop G^(a) M_(c )^(b) r^(c )` `[LT^(-1)] prop [M^(-1) L^(3) T^(-2)]^(a) [M]^(b) [L]^(c )` `M^(0) L^(1) T^(-1) prop M^(-a + b) L^(3a + c) T^(-2a)` Comparing powers of `M, L` and `T` `-a + b = 0` `3a + c = 1` `- 2a = - 1` `a = (1)/(2), b = - (1)/(2), c = - (1)/(2)` `v prop G^((1)/(2)) M_(e)^((1)/(2)) r^(-(1)/(2)) implies v prop sqrt((G M_(e))/(r)) implies v = k sqrt((G M_(e))/(r))` From experiment, `k = 1` `v = sqrt((G M_(e))/(r))` |
|