Saved Bookmarks
| 1. |
The sum of n terms of the following series 1 + (1 + x) + (1 + x + x2) + .... will be(a) \(\frac{1-x^n}{1-x}\)(b) \(\frac{x(1-x^n)}{1-x}\)(c) \(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\)(d) None of the above |
|
Answer» (c) \(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\) Sn = 1 + (1 + x) + (1 + x + x2) + .... n terms ⇒ Sn = \(\frac{1}{1-x}\) [(1 – x) + (1 – x) (1 + x) + (1 – x) (1 + x + x2) + .... to n terms] = \(\frac{1}{1-x}\) [(1 – x) + (1 – x2) + (1 – x3) + .... to n terms] = \(\frac{1}{1-x}\) [n – (x + x2 + x4 + .... to n terms] = \(\frac{1}{1-x}\) \(\bigg[n-\frac{x(1-x^n)}{1-x}\bigg]\) \(\bigg(\because\,S_n = \frac{a(1-r^n)}{1-r}\bigg)\) = \(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\) |
|