1.

The sum of n terms of the following series 1 + (1 + x) + (1 + x + x2) + .... will be(a) \(\frac{1-x^n}{1-x}\)(b) \(\frac{x(1-x^n)}{1-x}\)(c) \(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\)(d) None of the above

Answer»

(c) \(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\)

Sn = 1 + (1 + x) + (1 + x + x2) + .... n terms

⇒ Sn = \(\frac{1}{1-x}\) [(1 – x) + (1 – x) (1 + x) + (1 – x) (1 + x + x2) + .... to n terms]

\(\frac{1}{1-x}\) [(1 – x) + (1 – x2) + (1 – x3) + .... to n terms]

\(\frac{1}{1-x}\) [n – (x + x2 + x4 + .... to n terms]

\(\frac{1}{1-x}\) \(\bigg[n-\frac{x(1-x^n)}{1-x}\bigg]\)                    \(\bigg(\because\,S_n = \frac{a(1-r^n)}{1-r}\bigg)\)

\(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\)



Discussion

No Comment Found