

InterviewSolution
1. |
The sum of squares of the roots of x2 + 8x + 15 = 0 is …………A) 30 B) 34 C) 40 D) 44 |
Answer» Correct option is (B) 34 Given quadratic equation is \(x^2+8x+15=0\) Let roots are \(\alpha\;and\;\beta.\) \(\therefore\) Sum of roots \(=\frac{-8}1=-8\) \(\Rightarrow\) \(\alpha+\beta\) = -8 _____________(1) And product of roots \(=\frac{15}1=15\) \(\Rightarrow\) \(\alpha\beta=15\) _____________(2) Now, \((\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta\) \(=(-8)^2-4\times15\) = 64 - 60 = 4 \(=2^2\) \(\therefore\) \(\alpha-\beta=2\) _____________(3) By adding equations (1) & (3), we get \((\alpha+\beta)+(\alpha-\beta)=-8+2\) \(\Rightarrow\) \(2\alpha=-6\) \(\Rightarrow\) \(\alpha=\frac{-6}2=-3\) \(\therefore\) \(\beta=-8-\alpha\) (From (1)) = -8 - (-3) = -8+3 = -5 \(\therefore\) \(\alpha^2+\beta^2=(-3)^2+(-5)^2\) = 9+25 = 34 Alternative :- \(\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta\) \(=(-8)^2-2\times15\) = 64 - 30 = 34 Correct option is B) 34 |
|