1.

The sum of the series `(1)/(1.23)+(1)/(3.45)+(1)/(5.67)+…infty` isA. `log_(e )2-1/2`B. `log_(e)2`C. `log_(e )2+1/2`D. `log_(e )2+1`

Answer» Answer:
We have
`(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+…infty`
`=underset(n=1)overset(infty)Sigma(1)/((2n-1)2n(2n+1))`
`underset(n=1)overset(infty)Sigma{(1)/(2(2n-1))-(1)/(2n) (1)/(2(2n+1))}`
`=1/2underset(n=1)overset(infty)Sigma{(1)/(2n-1)-(2)/(2n)+(1)/(2n+1)}`
`=1/2 underset(n=1)overset(infty)Sigma{((1)/(2n-1)-(1)/(2n))-((1)/(2n)-(1)/(2n+1))}`
`=1/2log_(e)2+1/2log_(e)2-1/2=log_(e)2-1/2`


Discussion

No Comment Found