1.

The sum of the series `x+(2^(2))/(2!)x^(2)+(3^(2))/(3!)x^(3)`+…. to `infty` isA. `x^(2)e^(x)`B. `(x+x^(2))e^(x)`C. `(x+1)e^(x)`D. `(2x+x^(2))e^(x)`

Answer» Answer:
We have
`x+(2^(2))/(2!)x^(2)+(3)^(2)/(3!)x^(3)+….infty`
`=underset(n=1)overset(infty)Sigma (n+n(n-1))/(n!).x^(n)`
`=xunderset(n=1)overset(infty)Sigma(x^(n-1))/(n-1)!+x^(2)underset(n=2)overset(infty)Sigma(x^(n-2))/(n-2)!`
`=xe^(x)+x^(2)e^(x)=(x+x^(2))e^(x)`


Discussion

No Comment Found