| 1. |
The tangent to the curve y2 = 16x and touches the curve at a point (1, 4). Find the distance of origin from the tangent1. \(\rm {1\over\sqrt5}\)2. \(\rm {2\over\sqrt5}\)3. \(\rm {3\over\sqrt5}\)4. \(\rm {4\over\sqrt5}\) |
|
Answer» Correct Answer - Option 2 : \(\rm {2\over\sqrt5}\) Concept: The slope of the line tangent to the curve; \(\rm {y_2-y_1\over x_2-x_1}=\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)_{at(x_1, y_1)}\) = m Where (x1, y1) are the point on which tangent touches the curve and (x2, y2) is any other point on the tangent Equation of the line with slope m and an on line points (x1, y1) is: \(\rm (y-y_1) = m(x-x_1)\) Distance of a point (p, q) from a line ax + by + c = 0: D = \(\rm \left|{ap+bq+c\over\sqrt{a^2+b^2}}\right|\) Calculation: Given curve y2 = 16x Differentiating w.r.t x on both sides ⇒ \(\rm \frac{\mathrm{d} }{\mathrm{d} x}y^2=\frac{\mathrm{d} }{\mathrm{d} x}16x\) ⇒ 2y \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}\) = 16 The point on which tangent touches the curve is (1, 4) ⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x} = {8\over 4}\) = 2 ⇒ Slope of tangent m = 2 Now equation of the tangent: \(\rm (y-y_1) = m(x-x_1)\) ⇒ y - 4 = 2(x - 1) ⇒ y - 2x - 2 = 0 So, distance of the origin (0, 0) from normal is; D = \(\rm \left|{ap+bq+c\over\sqrt{a^2+b^2}}\right|\) ⇒ D = \(\rm \left|{1\times0+(-2)\times0+(-2)\over\sqrt{1^2+(-2)^2}}\right|\) ⇒ D = \(\boldsymbol{\rm \left|{-2\over\sqrt5}\right| = {2\over\sqrt5}}\) |
|