1.

The temperature of an isolated black body falls from T_(1) to T_(2) in time t. Let c be a constant

Answer»

`t = c [(1)/(T_(2)) - (1)/(T_(1))]`
`t = c [(1)/(T_(2)^(3)) - (1)/(T_(1)^(2))]`
`t = c [(1)/(T_(2)^(3)) - (1)/(T_(1)^(3))]`
`t = c [(1)/(T_(2)^(4)) - (1)/(T_(1)^(4))]`

Solution :(3) `ms (dT)/(dt) = - SIGAM A (T^(4) - 0)`
`int_(T_(1))^(T_(2)) (dT)/(T^(4)) = - sigma A int_(0)^(t) dt`
`[(1)/(T_(2)^(3)) - (1)/(T_(1)^(3))] = (3 sigma A) t`
`t - (1)/((3 sigma A)) [(1)/(T_(2)^(3)) - (1)/(R_(1)^(3))]`
`t = c [(1)/(T_(2)^(3)) - (1)/(T_(1)^(3))], c = (1)/(3 sigma A)`


Discussion

No Comment Found