1.

The temperature of uniformrodoflength Lhavinga coefficientof linearexpansionalpha_(L) ischangedby Delta T . Calculatethe newmomentof inertia of the uniformrodaboutaxispassingthroughitscenterandperpendicularto anaxisof the rod.

Answer»

Solution :MOMENT of inertia of a UNIFORM rod of MASS and length l about its perpendicular bisector.
Moment of inertia of the rod
`I=(1)/(12)ML^(2)`

Increase in length of the rod when temperature is increased by `DeltaT`, is given by
`L.=L(1+alpha_(L)DeltaT)`
New moment of inertia of the rod
`I.=(ML.^(2))/(12)=(M)/(12)L^(2)(1+alpha_(L)DeltaT)^(2)`
`I.=I(1+alpha_(L)DeltaT)^(2)`


Discussion

No Comment Found