1.

The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K.If the value ofA is 4xx10^(10)S^(-1).Calculate k at 318 K and E_(a)

Answer»

Solution :`T_(1)`=298,time =`t_(1)`
If initial concentration =`[R]_(0) mol L^(-1)`
The reaction is COMPLETE 10% ,so 90% reactant will be reamain.
`therefore[R]_(t)=0.9[R]_(0) mol L^(-1)`
`therefore` log `k_(298)=(2.303)/(t_(1)) log [R_(0)]/(0.9 [R]_(0))=(2.303)/(t_(1))` log `(1)/(0.9)`
`therefore t_(1)=(2.303)/(log k_(298))xx0.04575`
`therefore t_(1)=(0.1054)/(log k_(298))`
Inintial concentration =`[R]_(0) mol L^(-1),T_(2)`=308 K .
The 25% reaction is complete in t time.
`therefore` The concentration after completion of 75%
reaction=75% of `[R]_(0)`
`therefore [R]_(t)=0.75[R]_(0) mol L^(-1)`
`k_(308)=(2.303)/(t_(2))xxlog ([R]_(0))/(0.75 [R]_(0))`
`(2.303)/(t_(2))xxlog 1.3333=(2.303xx0.1249)/(t_(2))`
`therefore t_(2)=(0.2878)/(log k_(308))`........(2)
But `t_(1)=t_(2)`
`therefore (0.1059)/(k_((298)))=(0.2878)/(k_((308)))`
`therefore (K_((308)))/(k_((298)))=(0.2878)/(0.1059)=2.717` ..........(3)
Calculation of `E_(a)` :`=4XX10^(10)s^(-1)` so, at 318 K temperature k=(?)`E_(a)` (?)
`therefore (log K_(2))/(log k_(1))=(E_(a))/(2.303xx8.314)((308-298)/(308xx298))`
`therefore` log 2.717=`(E_(a))/(2.303xx8.314)xx(10)/(308xx298)`
`therefore E_(a)=75990.0 J mol^(-1)` Calculation of k at 318 k temperature:
logk=log A-`(E_(a))/(2.303 RT)`
`=log 4xx10^(10)-(75990 mol^(-1))/(2.303xx8.314 JK^(-1) mol^(-1)xx318 K)` `therefore`=Anilog 2.218=`1.327xx10^(-2)s^(-1)`
`therefore` k=0.013267 `s^(-1)~~0.013 s^(-1)`


Discussion

No Comment Found