InterviewSolution
Saved Bookmarks
| 1. |
The value of `a` for which the equation `(1-a^2)x^2+2ax-1=0` has roots belonging to `(0,1)` isA. `a lt (1+ sqrt(5))/(2)`B. `a gt 2`C. `(1+sqrt(5))/(2) lt a lt 2`D. `a gt sqrt(2)` |
|
Answer» Correct Answer - B Let `f(x) = (1 -a^(2)) x^(2) + 2ax - 1`. Then, f(x) = 0 will have its roots between 0 and 1, if (i) Discriminant `ge` 0 (ii) 0 and 1 are outside the roots of f(x) = 0 i.e. `(1-a^(2)) f(0) gt 0 and (1-a^(2)) f(1) gt 0` Now, (i) Discriminant `ge` 0 `rArr" "4a^(2) + 4(1-a^(2)) gt 0`, which is always true for all `a in R` (ii) `(1-a^(2)) f(0) gt 0` `rArr" "-(1-a^(2)) gt 0 rArr a^(2) - 1 gt 0 rArr a lt - 1 or, a gt 1" "...(i)` and, `(1-a^(2)) f(1) gt 0` `rArr" "(1-a^(2))(2a - a^(2)) gt 0` `rArr" "a(a-1)(a+1)(a-2) gt 0` `rArr" "a lt - 1 or, a gt 2 or, 0 lt a lt 1" "...(ii)` From (i) and (ii), we get `a lt -1 or, a gt 2`. |
|