InterviewSolution
| 1. |
The value of \(\frac{{4 + 3\sqrt 3 }}{{7 + 4\sqrt 3 }}\) is1). 5√3 – 82). 5√3 + 83). 8√3 + 54). 8√3 – 5 |
|
Answer» Given the expression: $(\frac{{4 + 3\sqrt 3 }}{{7 + 4\sqrt 3 }})$ Multiplying the numerator and DENOMINATOR by (7 - 4√3), we get $(\Rightarrow \frac{{4 + 3\sqrt 3 }}{{7 + 4\sqrt 3 }} = \frac{{\LEFT( {4 + 3\sqrt 3 } \right) \TIMES \left( {7 - 4\sqrt 3 } \right)}}{{\left( {7 + 4\sqrt 3 } \right) \times \left( {7 - 4\sqrt 3 } \right)}})$ We know that, (a + b) (a - b) = a2 – b2 Hence, $(\Rightarrow \frac{{4 + 3\sqrt 3 }}{{7 + 4\sqrt 3 }} = \frac{{\left( {4 + 3\sqrt 3 } \right) \times \left( {7 - 4\sqrt 3 } \right)}}{{{7^2} - {{\left( {4\sqrt 3 } \right)}^2}}})$ $(= \frac{{\left( {28 + 21\sqrt 3- 16\sqrt 3- 36} \right)}}{{49 - 48}})$ = 5√3 - 8 |
|