

InterviewSolution
Saved Bookmarks
1. |
The value of \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) is(a) 1 (b) 3 (c) \(\frac13\)(d) zero |
Answer» (b) 3 Since (a-b) + (b-c) + (c-a) = 0 ∴ (a-b)3 + (b-c)3 + (c-a)3 = 3(a-b)(b-c)(c-a) ⇒ \(\frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)}\) = \(\frac{3(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}\) = 3. |
|