1.

The value of int_0^100 [ tan^(-1) x] dx is ([.] G.I. F.)

Answer»

100
`100-tan^(-1)1`
`100-TAN1`
`100+pi/4`

Solution :We have,
`int_0^100[tan^(-1)X]DX =int_(0)^(tan1)[tan^(-1)x]dx + int_(tan1)^100 [tan^(-1)x]dx`
`RARR int_0^100[tan^(-1)x]dx=int_0^(tan1)0 dx + int_(tan1)^(100)1.dx=100-tan1`


Discussion

No Comment Found

Related InterviewSolutions