

InterviewSolution
Saved Bookmarks
1. |
The value of `int(cos^(3)x)/(sin^(2)x+sinx)dx` is equal toA. `log_(e)|sinx|+sinx+C`B. `log_(e)|sinx|-sinx+C`C. `-log_(e)|sinx|-sinx+C`D. `-log_(e)|sinx|+sinx+C` |
Answer» Correct Answer - B `I=int(cos^(3)x)/(sin^(2)x+sinx)dx` `=int(cosx.(1-sin^(2)x))/(sinx(1+sinx))dx` Put `sinx=t,` then `cos xdx =dt` `rArr" "I=int((1-t)(1+t)dt)/(t(1+t))` `=int((1-t)dt)/(t)` `=int((1)/(t)-1)dt` `=log_(e)|t|-t+C` `=log_(e)|sinx|-sinx+C` |
|