1.

The value of `int(cos xdx)/((sinx-1)(sinx-2))` is equal toA. `log|(sinx-2)/(sinx-1)|+C`B. `log((sinx-1)/(sinx-2))+C`C. `log(sinx-2)+C`D. None of these

Answer» Correct Answer - A
Let `l=int(cosxdx)/((sinx-1)(sinx-2))`
Put `sinx = t rArr cos x dx=dt`
`therefore" "l=int(dt)/((t-1)(t-2))=int((1)/(t-2)-(1)/(t-1))dt`
`=log|t-2|-log|t-1|+C`
`=log|(t-2)/(t-1)|+C=log|(sinx-2)/(sinx-1)|+C`


Discussion

No Comment Found