InterviewSolution
Saved Bookmarks
| 1. |
The value of `int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx` isA. `-tan(1+logtan.(x)/(2))+c`B. `sec^(2)(1+logtan.(x)/(2))+c`C. `tan(1+log tan.(x)/(2))+c`D. `sin^(2)(1+logtan.(x)/(2))+c` |
|
Answer» Correct Answer - C `I=int("cosec x")/((cos^2)(1+log tan.(x)/(2)))dx` `"Let "1+log tan.(x)/(2)=t` `therefore" "(1)/(sin x)dx=dt` `therefore" "I=int(dt)/(cos^(2)t)` `" "=tant+c` `" "=tan(1+log tan.(x)/(2))+c` |
|