

InterviewSolution
Saved Bookmarks
1. |
The value of `int (dx)/((1+sqrtx)(sqrt(x-x^2)))` is equal toA. `(1+sqrt(x))/((1-x)^(2))+c`B. `(1+sqrt(x))/((1+x)^(2))+c`C. `(1-sqrt(x))/((1-x)^(2))+c`D. `(2(sqrt(x)-1))/(sqrt((1-x)))+c` |
Answer» Correct Answer - D Let `I=int(dx)/((1+sqrt(x))sqrt((x-x^(2))))` If `sqrt(x)=sinp, " then " (1)/(2sqrt(x))dx=cos p dp` ` :. I=int (2sin p cos p dp)/((1+sinp)sinp cosp)` `=2int (dp)/((1+sin p))` `=2int((1-sinp)dp)/(cos^(2)p)` `=2{int sec^(2)p dp-int(tanp sec p)dp}` `=2(tanp-secp)+C` `=2(sqrt((x)/((1-x)))-(1)/(sqrt((1-x))))+C=(2(sqrt(x)-1))/(sqrt((1-x)))+C` |
|