1.

The value of `int (dx)/((1+sqrtx)(sqrt(x-x^2)))` is equal toA. `(1+sqrt(x))/((1-x)^(2))+c`B. `(1+sqrt(x))/((1+x)^(2))+c`C. `(1-sqrt(x))/((1-x)^(2))+c`D. `(2(sqrt(x)-1))/(sqrt((1-x)))+c`

Answer» Correct Answer - D
Let `I=int(dx)/((1+sqrt(x))sqrt((x-x^(2))))`
If `sqrt(x)=sinp, " then " (1)/(2sqrt(x))dx=cos p dp`
` :. I=int (2sin p cos p dp)/((1+sinp)sinp cosp)`
`=2int (dp)/((1+sin p))`
`=2int((1-sinp)dp)/(cos^(2)p)`
`=2{int sec^(2)p dp-int(tanp sec p)dp}`
`=2(tanp-secp)+C`
`=2(sqrt((x)/((1-x)))-(1)/(sqrt((1-x))))+C=(2(sqrt(x)-1))/(sqrt((1-x)))+C`


Discussion

No Comment Found

Related InterviewSolutions