 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | The value of `intxsinxsec^(3)xdx` isA. `(1)/(2)[sec^(2)x-tanx]+c`B. `(1)/(2)[xsec^(2)x-tanx]+c`C. `(1)/(2)[xsec^(2)x+tanx]+c`D. `(1)/(2)[sec^(2)x+tanx]+c` | 
| Answer» Correct Answer - B `int x sin x sec^(2) x dx = int x sin x(1)/(cos^(3))dx` `= int x tan x* sec^(2)x dx` Put `tan x=t rArr sec^(2) x dx=dt` and `x= tan^(-1)t` Then, it reduces to `int tan^(-1) t* t dt =(t^(2))/(2) tan^(-1) t- int (t^(2))/(2(1+t^(2))dt` `= (x tan^(2) x)/(2)-(1)/(2)t+(1)/(2) tan^(-1)t+c` `=(x (sec^(2)x-1))/(2)-(1)/(2) tan x+(1)/(2)x+c` `=(1)/(2)[ xsec^(2)x- tan x] +c` | |