InterviewSolution
Saved Bookmarks
| 1. |
The value of `lim_(xto2)sqrt(1-cos 2(x-2))/(x-2)` , isA. `sqrt(2)`B. `-sqrt(2)`C. `2`D. none of these |
|
Answer» Correct Answer - D We have `lim_(xto2)sqrt(1-cos 2(x-2))/(x-2)=lim_(xto2) (sqrt1-|sin 2(x-2)|)/(x-2)` Now, `lim_(xto2^-)sqrt(1-cos 2(x-2))/(x-2)=lim_(xto2^-) (sqrt1-|sin 2(x-2)|)/(x-2)` ` =-sqrt(2) lim_(xto2) (sin(x-2))/(x-2)[because x lt 2rArr x-2lt 0 rArr sin (x-2) lt 0rArr |sin (x-2)|=- sin (x-2)]` ` =-sqrt(2)` and, `lim_(xto2^+)sqrt(1-cos 2(x-2))/(x-2)=lim_(xto2^+) (|sqrt2-sin (x-2)|)/(x-2)` `=sqrt(2)lim_(xto2) (sin(x-2))/(x-2)=sqrt(2) [because x gt rArr x-2 gt0 rArr sin (x-2)gt 0 rArr |sin (x-2)|=sin (x-2)]` `therefore lim_(xto2^-) sqrt(1-cos 2(x-2))/(x-2)ne lim_(xto2^+) sqrt(1-cos 2(x-2))/(x-2)` `therefore lim_(xto2) sqrt(1-cos 2(x-2))/(x-2)` does not exist. |
|