1.

The value of n for which the expression x4 + 4x3 + nx2 + 4x + 1 becomes a perfect square is: 1. 3 2. 4 3. 5 4. 6

Answer»

4. 6

x4 + 4x3 + nx2 + 4x + 1= (ax2 + bx + c)2

x4 + 4x3 + nx2 + 4x + 1 = a2 x4 + b2 x2 + c2

+2abx3 + 2bcx + 2acx2

= a2 x4 + 2abx3 + (b2 + 2ac ) x2 + 2bcx + c2

Comparing coefficients, 

a2 = 1

c2 = 1

2ab = 4

b2 + 2 ac = n

2bc = 4

Solving, we get a/c = 1 ⇒ a = c

b = \(\pm\)2 , a = \(\pm\)1 , c = \(\pm\)1

∴ b+ 2ac = 4 + 2 = 6



Discussion

No Comment Found

Related InterviewSolutions