1.

The value of \(sec^{-1}\left(sec\frac{8\pi}{5}\right)\)isA. \(\frac{2\pi}{5}\)B. \(\frac{3\pi}{5}\)C. \(\frac{8\pi}{5}\)D. none of these

Answer»

Correct Answer is \(\frac{2\pi}{5}\)

Now, let x = \(sec^{-1}\left(sec\frac{8\pi}{5}\right)\)

⇒ sec x =sec ( \(\frac{8\pi}{5}\)

Here range of principle value of sec is [0, π] 

⇒ x = \(\frac{8\pi}{5}\)∉ [0, π] 

Hence for all values of x in range [0, π] ,the value of 

\(sec^{-1}\left(sec\frac{8\pi}{5}\right)\) is 

⇒ sec x =sec (2π - \(\frac{8\pi}{5}\) ) ( \(\because\)sec ( \(\frac{8\pi}{5}\))= sec (2π -  \(\frac{2\pi}{5}\)) ) 

⇒ sec x =sec ( \(\frac{2\pi}{5}\)) ( \(\because\)sec (2π - θ)= sec θ) 

⇒ x= \(\frac{2\pi}{5}\)



Discussion

No Comment Found