1.

The value of `sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2)` is equal toA. `n^(2) ""^(2n -1)C_(n -1)`B. `n^(2) """^(2n-2)C_(n)`C. `n^(2) ""^(2n)C_(n -1)`D. `n^(2) ""^(2n -1)C_(n)`

Answer» Correct Answer - b
`sum_(r=0)^(n) (n-r)(""^(n)C_(r))^(2)`
`= n sun_(r=0)^(n) (r ""^(n)C_(r)) (""^(n)C_(r)) - sum_(r=1)^(n) (r ""^(n)C_(r))^(2)`
`= n^(2) (sum_(r=1)^(n) ""^(n-1)C_(r-1) ""^(n)C_(r)) - n^(2) {sum_(r=1)^(n) (""^(n-1)C_(r-1))^(2)}`
`= n^(2)` { Coeff. of` "" x^(n-1)` in` (1 + x )^(2n-1)}`
` - n^(2) `{Coeff. of `x^(n-1)` in`(1 + x)^(2n-2)} `
`= n^(2) ""^(2n-1)c_(n-1) - n^(2) ""^(2n -2)C_(n-1)`
`n^(2) {((2n -1)1)/(n!(n-1)!) - ((2n -2)!)/((n-1)!(n-1)!) -n^(2) ((2n -2)!)/((n-2)!n)`
` n^(2) ""^(2n-2)C_(n)`


Discussion

No Comment Found

Related InterviewSolutions