1.

The value of the integral `int(dx)/(x^(n)(1+x^(n))^(1//n)), n in N` isA. `(1)/((1-n))(1+(1)/(x^(n)))^(1-1//n)+C`B. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`C. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`D. `(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`

Answer» Correct Answer - A
`int(dx)/(x^(n)(1+x^(n))^(1//n))=int(dx)/(x^(n).x((1)/(x^(n))+1)^(1//n))`
`=int(dx)/(x^(n+1)((1)/(x^(n))+1)^(1//n))`
`"Put "(1)/(x^(n))+1=t`
`rArr-(n)/(x^(n+1))dx=dt`
`rArr" "-(1)/(n)int(dt)/(t^(1//n))=-(1)/(n)int t^(-1//n)dt=-(1)/(n).(t^(1-(1)/(n)))/((1-(1)/(n)))+C`
`=(1)/((1-n))(1+(1)/(x^(n)))^(1-(1)/(n))+C`


Discussion

No Comment Found