1.

The value of the term independent of x in the expansion of `(x^(2)-(1)/(x))^(9)` is :A. 9B. 18C. 48D. 84

Answer» Correct Answer - D
`(x^(2)-(1)/(x))^(9)`
`t_(r+1)=.^(9)C_(r)(x^(2))^(9-r)((-1)/(x))^(r)`
`.^(9)C_(r)x^(18-2r).(-1)^(r).x^(-r)`
`=.^(9)C_(r)(x)^(18-3r)(-1)^(r)" "...(1)` Term will be independent of x when
18 - 3r = 0
r = 6
Put r = 6, in [1]
`t_(7)=.^(9)C_(6)(-1)^(6)=(9!)/(6!3!)=84`


Discussion

No Comment Found