

InterviewSolution
Saved Bookmarks
1. |
The vector equation of the plane passing through the origin and the line of intersection of the planes `vecr.veca=lamdaandvecr.vecb=mu` isA. `vecr.(lamdaveca-muvecb)=0`B. `vecr.(lamdavecb-muveca)=0`C. `vecr.(lamdaveca+muvecb)=0`D. `vecr.(lamdavecb+muveca)=0` |
Answer» Correct Answer - b The equation of a plane through the line of intersection of the planes `vecr*veca=lamda and vecr*vecb= mu` is `" "(vecr*veca-lamda)+k(vecr*vecb-mu)=0` or `" "vecr*(veca+kvecb)= lamda+kmu" "`(i) This passes through the origin, therefore `" "vec0(veca+k vecb) = lamda+ muk or k= (-lamda)/(mu)` Putting the value of k in (i), we get the equation of the required plane as `" "vecr*(muveca-lamdavecb)= 0 or vecr*(lamda vecb-mu veca)=0` |
|