InterviewSolution
Saved Bookmarks
| 1. |
The vertices of a triangle are `A(x_1,x_1 tan alpha), B (x_2,x_2 tan Beta) and C(x_3, x_3 tan gamma)`. If the circumcentre of `DeltaABC` coincides with the origin and H (a, b) be its orthocentre, then `a/b` is equal to |
|
Answer» `G((x_1+x_2+x_3)/3,(x_1tanalpha+x_2tanbeta+x_3tangamma)/3)` `H(3/2(x_1+x_2+x_3)/3,3/2(xtanalpha+x_2tanbeta+x_3tangamma)/3)` `H(a,b)` `sqrt(x_1^2+x_1^2tan^2alpha)=R` `x_1^2=R^2/(sec^2alpha)` `x_1=R/secalpha` `a/b=(R(cosalpha+cosbeta+cosgamma))/(R(sinalpha+sinbeta+singamma))`. |
|