1.

The volume of a cubical box is 474. 552 cubic metres. Find the length of each side of the box.

Answer»

Given, 

Volume of a cube = 474.552 cubic metres 

V = 83,

S = side of the cube 

So, 

83 = 474.552 cubic metres

= 8 = \(\sqrt[3]{474.552}\) = \(\sqrt[3]{\frac{474552}{1000}}\) = \(\frac{\sqrt[3]{474552}}{\sqrt[3]{1000}}\)

On factorising 474552 into prime factors, we get:

474552 = 2×2×2×3×3×3×13×13×13

On grouping the factors in triples of equal factors, we get: 

474552 = {2×2×2}×{3×3×3}×{13×13×13} 

Now taking 1 factor from each group we get:

\(\sqrt[3]{474.552}\) = \(\sqrt[3]{{\{2\times2\times2\times\}}\{\times3\times3\times3\}\{13\times13\times13\}}\)

\(2\times3\times13\) = 78

Also,

\(\sqrt[3]{1000} = 10\)

∴ \(8 = \frac{\sqrt[3]{474552}}{\sqrt[3]{1000}}\) = \(\frac{78}{10} = 7.8\)

So, length of the side is 7.8m.



Discussion

No Comment Found