InterviewSolution
Saved Bookmarks
| 1. |
The volume of a right circular cone is 9856 `c m^3`. Ifthe diameter of the base is 28cm, find:(i)height of the cone (ii) slant height of the cone(iii)curved surface area of thecone. |
|
Answer» We have, `V = 9856 cm^(3) and r = 14 cm` (i) Let the height of the cone be h cm Then, volume `= (1)/(3) pi r^(2)h` `rArr 9856 = (1)/(3) xx (22)/(7) xx 14 xx 14 xx h` `rArr h = ((9856 xx 3 xx 7)/(22 xx 14 xx 14)) = 48` `:.` height of the cone is 48 cm (ii) Let the slant height of the cone be l cm. Then, `l^(2) = r^(2) + h^(2)` `rArr l^(2) = (14)^(2) + (48)^(2) = 196 + 2304 = 2500` `rArr l = sqrt(2500)= 50` `:.` height of the cone is 50 cm (iii) Curved surface area of the cone `= pi rl` `= ((22)/(7) xx 14 xx 50) cm^(2) = 2200 cm^(2)` `:.` curved surface area of the cone is `2200 cm^(2)` |
|