

InterviewSolution
1. |
The weekly wages of 1000 workmen are normally distributed with a mean of 2000 and a standard deviation of 150. Estimate the number of workers whose wages lie between 1750 and 2250. |
Answer» \(\mu\) = mean = 2000 \(\sigma\) = Standard deviation = 150 \(X \sim N(\mu, \sigma^2)\) \(\frac{X - \mu}{\sigma} \sim N(0, 1)\) ⇒ \(\frac{X - 2000}{150} \sim N(0, 1)\) \(\because 1750 \le X \le 2250\) ⇒ \(\frac {1750 - 2000}{150} \le \frac{X - 2000}{150} \le \frac{2210-2000}{150}\) ⇒ \(\frac{-250}{150} \le \frac{X - 2000}{150} \le \frac{250}{150}\) ⇒ \(\frac{-5}3 \le \frac {X - 2000}{150} \le \frac53\) \(\because \frac{X - 2000}{150} \sim N(0, 1)\) \(\therefore P\left(\frac{-5}3 \le \frac{X - 2000}{150} \le \frac 53\right) = P(Y \le \frac53) - P(Y \le \frac{-5}3 )\) \(= 0.9516 - 0.0485\) \(= 0.9031\) The number of workers whose wages lie between 1750 & 2250 = 0.9031 x total no. of workers \(= 0.9031 \times 1000\) \(= 903.1 \approx 903\) (approx) |
|