1.

Find the missing frequencies and the median for the following distribution if the mean is 1.46. No. of accidents:012345 Total Frequency (No. of days):46??25105200

Answer»
 No. of accidents (x) No.of days (f) Fx
0460
1xx
2y2y
32575
41040
5525
 N = 200\(\sum\)fx = x + 2y + 140

Given, 

N = 200

= 46 + x + y + 25 + 10 + 5 = 200

= x + y = 200 – 46 – 25 – 10 – 5

= x + y = 114 (i)

And Mean = 1.46

\(\frac{\sum fx}{N}=1.46\)

\(=\frac{x+2y+140}{200}=1.46\)

= x + 2y + 140 = 292

= x + 2y = 292 – 140

= x + 2y = 152 (ii)

Subtract (i) from (ii), we get

X + 2y – x – y = 152 – 114

y = 38 

Put the value of y in (i), we get 

x = 114 – 38 = 76

 No. of accidents No. of days  Cumulative frequency
0 4646
1 76122
2 38160
3 25185
4 10195
5 5200
 N = 200

We have, 

N = 200

\(\frac{N}{2}=\frac{200}{2}=100\)

The cumulative frequency just more than \(\frac{N}{2}\) is 122 so the median is 1



Discussion

No Comment Found

Related InterviewSolutions