InterviewSolution
Saved Bookmarks
| 1. |
To reduce the differential equation `(dy)/(dx) + P (x)*y = Q (x) * y^(n)` to the linear form , the substitution isA. `v = 1/(y^(n))`B. ` v = 1/(y^(n-1))`C. ` v = y^(n)`D. `v = y^(n-1)` |
|
Answer» Correct Answer - a The Given differential equation is ` (dy)/(dx) + P (x)* y = Q (x) * y^(n)` ` rArr 1/(y^(n)) * (dy)/(dx) + y^(-n+1) P y = Q (x)* y^(n)` Put ` 1/(y^(n-1))= v ` ` rArr (-n +1) y^(-n)(dy)/(dx) =(dv)/(dx)` ` :. 1/(-n+1) * (dv)/(dx) +P (x) * v = Q (x)` ` rArr (dv)/(dx) +(1-n) P (x) * v = (1-n) Q (x)` which is linear differential equation . Hence , required substitiution is ` v = 1/(y^(n-1))` |
|