1.

Two chords AB and CD of a circle intersect at a point P outside the circle. Prove that: (i) ∆ PAC ~ ∆ PDB (ii) PA. PB = PC.PD

Answer»

Given : AB and CD are two chords 

To Prove: 

(a) ∆ PAC - ∆ PDB 

(b) PA. PB = PC.PD 

Proof: ∠ABD + ∠ACD = 180° …(1) (Opposite angles of a cyclic quadrilateral are supplementary) 

∠PCA + ∠ACD = 180° …(2) (Linear Pair Angles ) 

Using (1) and (2), we get 

∠ABD = ∠PCA 

∠A = ∠A (Common)

By AA similarity-criterion ∆ PAC - ∆ PDB 

When two triangles are similar, then the rations of the lengths of their corresponding sides are proportional. 

∴ PA/PD = PC/PB 

⇒ PA.PB = PC.PD



Discussion

No Comment Found

Related InterviewSolutions