1.

Two circles of radii a and b (a < b) touch externally. Length of the direct common tangent from the point of intersection of the direct common tangents to the smaller circle is

Answer» `/_ ABM~~/_PQM` (AAA)
`(BM)/(QM)=(AB)/(PQ)=b/a`
`(BQ+QM)/QM=b/a` -(1)
AX=AB-XB
=b-a
In `/_AXP`
BQ=PX=`sqrt(AP^2-AX^2)`
=`sqrt((a+b)^2-(b-a)^2)`
=`sqrt(4ab)`
=`2sqrt(ab)`
from eqation 1
`(2 sqrt(ab)+QM)/(QM)=b/a`
`(2 sqrt(ab))/(QM) +1=b/a`
`(2 sqrt(ab))/(QM)=(b-a)/a`
QM=`(2a sqrt(ab))/(b-a)`


Discussion

No Comment Found

Related InterviewSolutions