

InterviewSolution
Saved Bookmarks
1. |
Two pipes running together can fill a tank in \(11\frac{1}{9}\) minutes. If one pipe takes 5 minutes more than the other to fill the tank separately, find the time in which each p ipe would fill the tank separately. |
Answer» Let the faster pipe fill the tank in ‘a’ min Slower pipe fills it in ‘a + 5’ min. Given, the pipes running together can fill a tank in \(11\frac{1}{9}\) = 100/9 minutes. In 1 min, part of tank filled = 9/100 \(\Rightarrow \frac{1}{a}+\frac{1}{a\,+\,5}=\frac{9}{100}\) ⇒ 100(a + a + 5) = 9(a2 + 5a) ⇒ 200a + 500 = 9a2 + 45a ⇒ 9a2 – 155a - 500 = 0 ⇒ 9a2 – 180a + 25a - 500 = 0 ⇒ 9a(a – 20) + 25(a – 20) = 0 ⇒ (9a + 25)(a – 20) = 0 ⇒ a = 20 mins Slower pipe will fill it in 25 min |
|