InterviewSolution
Saved Bookmarks
| 1. |
UnivSATTop10AcceptSFRatioExpensesGradRateBrown131089221322,70494CalTech141510025663,57581CMU12606259925,02672Columbia131076241231,51088Comell128083331321,86490Dartmouth134089231032,16295Duke131590301231,58595Georgetown125574241220,12692Harvard140091141139,52597JohnHopkins13057544758,69187MIT138094301034,87091Northwestern126085391128,05289NotreDame125581421315,12294PennState108138541810,18580Priceton13759114830,22095Purdue10052890199,06669Stanford136090201236,45093TexasA&M10754967258,70467UCBerkeley124095401715,14078UChicago129075501338,38087UMichigan118065681615,47085UPenn128580361127,55390UVA122577441413,34992UWisconsin108540691511,85771Yale137595191143,51496 |
|
Answer» {white} → {blue} Lift = 0.4 / (0.5 * 0.8) = 0.4 / 0.4 = 1 Lift = confidence / (benchmark confidence) Benchmark assumes independence between ANTECEDENT and consequent P (Consequent & Antecedent) = P (C) * P (A) Benchmark confidence = P (C | A) = P (C & A) / P (A) = P (C) * P (A) / P (A) Lift = Support (C U A) / [Support(C) * Support(A)] Lift > 1 indicates a rule that is useful in FINDING consequent item SETS (i.e. more useful than selecting transactions RANDOMLY) |
|