InterviewSolution
Saved Bookmarks
| 1. |
उस समतल का सदिश समीकरण ज्ञात कीजिए जो समतलो ` vec r * ( 2hati + 2hatj - 3hatk ) = 7,vecr* ( 2hati + 5hatj + 3 hatk) =9 ` के प्रतिच्छेदन रेखा और ` (2,1,3) ` से होकर जाता है | |
|
Answer» दिए गए समतलों के समीकरण निम्न है, ` vecr* ( 2hati + 2hatj -3hatk) = 7 ` तथा `vecr *( 2hati + 5hatj + 3hatk ) = 9 ` इन समतल के समीकरणों को निम्न प्रकार लिखा जा सकता है, ` vecr * ( 2hati + 2hatj - 3hatk ) - 7 =0 " " ` ...(1) तथा ` vecr * ( 2hati + 5hatj + 3hatk) -9 = 0 ` ... ( 2) समतल (1 ) व (2 ) के प्रतिच्छेदन से जाने वाले समतल का समीकरण निम्न है, `[ vecr * ( 2hati + 2hatj - 3hatk ) - 7 ]+ lamda [ vecr * ( 2hati + 5hatj + 3hatk) - 9] = 0 ` ` rArr vecr * [(2hati + 2hatj - 3hatk ) +lamda ( 2hati + 5hatj +3hatk ) ] = 9 lamda + 7 ` ` rArr[ vecr* ( 2 + 2lamda ) hati + ( 2 + 5lamda )hatj + ( 3lamda - 3) hatk = 9 lamda + 7 ` ... ( 3 ) यह प्रतिच्छेदी समतल बिंदु ` (2, 1,3 ) ` , जिसका स्थिति सदिश ` vecr = 2hati +hatj + 3hatk ` है, से होकर जाता है | अतः r का मान समीकरण (3 ) में रखने पर, ` ( 2hati + hatj + 3 hatk ) * [ ( 2 + 2lamda ) hat i + ( 2 + 5lamda ) hatj + ( 3 lamda - 3 ) hatk ] = 9 lamda + 7 ` ` rArr 2 ( 2 + 2lamda ) + ( 2 + 5lamda) + 3 ( 3lamda -3 ) = 9lamda + 7 ` `rArr ( 4 + 4 lamda ) + ( 2 + 5lamda ) + ( 9lamda - 9 ) = 9 lamda + 7 ` `rArr - 3 + 18 lamda = 9 lamda + 7 ` ` rArr 9 lamda = 10 rArr lamda = ( 10 ) /(9) ` ` therefore ` समतल का समीकरण ` [ vecr * ( 2 hati + 2hati - 3 hatk ) - 7 ] + ( 10 ) /(9) [ vecr* ( 2hati + 5hatj + 3hatk ) - 9]=0 ` `rArr vecr * ( 18hati +18 hatj -27hatk + 20 hati + 50 hatj + 30 hatk ) - 63 -90 =0 ` ` rArr vecr * ( 38 hati + 68 hatj + 3hakt ) - 153 = 0 ` ` rArr vecr * ( 38 hati + 68 hatj + 3hat ) = 153 ` जोकि अभीष्ट समतल का समीकरण है | |
|