

InterviewSolution
Saved Bookmarks
1. |
Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8. |
Answer» Let ‘a’ and ‘b’ are positive integers, a = b × q + r Let b = 3. ∴ a = 3q + r (i) If r = 0 then a = 3q (ii) If r = l then a = 3q + 1 (iii) If r = 2 then a = 3q + 2 If we consider cubes of these, (i) If a = 3q, then a3 = (3)3 = 27q3 = 9(3q)3 = 9m (∵ m = 3q2) (ii) If a = 3q + 1, then (a)3 = (3q + 1)3 = 27q3 + 1 + 27q3 + 9q = 9(3q3 + 3q2 + q) + 1 = 9m + 1 (∵ m = 3q3+ 3q2 + q) iii) If a = 3q + 2, then (a)3 = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9(3q3 + 6q2 + 4q) + 8 = 9m + 8 ∴ Cube of any positive integer is of the form 9m, 9m + 1, 9m + 8. |
|