 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i)sqrt(25.3)""(ii)sqrt(49.5) (iii) sqrt(0.6)""(iv) (0.009)^(1/3) (v) (0.999)^(1/10)""(vi) (15)^(1/4) (vii) (26)^(1/3)""(viii) (255)^(1/4) (ix) (82)^(1/4)""(x)(401)^(1/2) (x i) (0.0037)^(1/2)""(x ii) (26.57)^(1/3) (x iii) (81.5)^(1/4)""(x iv) (3.968)^(3/2) (xv) (32.15)^(1/5 | 
| Answer» Solution :(i) `sqrt(25.3)` Let `f(x) = sqrtxrArrf'(x) = 1/(2sqrtx)` Letx= 25 andh = 0.3 Now, `f(x+H) = f(x)+hf'(x)` ` rArrf(25.3) = f (25) + 0.3 f'(25)` ` rArr sqrt(25.3)=sqrt(25) + 0.3 xx 1/(2sqrt(25)= 5+ (0.3)/10` ` = 5.03` (ii) `sqrt(49.5)` Let`f(x) = sqrtxrArrf' (x) = 1/(2sqrtx))` Let ` x = 49 and h = 0.5` Now `f(x+h) = f(x) + hf'(x)` `rArrf(49.5) = f(49) + 0.5 xx f' (49)` ` rArrsqrt(49.5) = sqrt(49)+ 0.5 xx 1/(2sqrt(49))` ` = 7 + 5/140 = 7.036` (iii) `sqrt(0.6)` Let `f(x)=sqrt xrArrf'(x) = 1/(2 sqrt x)` Let ` x = 0.64 and h = - 0.04` Now ` f(x+h) = f(x) +hf'(x)` ` rArrf(0.6) = f(0.64)-0.004 f'(0.64)` `rArrsqrt(0.6) = sqrt(0.64)-0.04xx 1/(2 sqrt(0.64)` ` = 0.8 - (0.04)/(2 xx 0.8)` ` = 0.8 - 0.025 = 0.775` (iv) `(0.009)^(1//3)` Let`f(x) = x^(1/3)rArrf'(x) = 1/3x^(2/3)` Let` x= 0.008 andh = 0.001` Now` f(x+h) = f(x) + hf'(x)` ` rArrf(0.009)=f(0.008) +0.001xx f'(0.008)` ` rArr(0.009)^(1/3) = (0.008)^(1/3) + (0.001)/(3 xx (0.008)^(2/3))` ` = 0.2 + (0.001)/(3 xx 0.04) ` ` = 0.2 + 0.008 = 0.208` (v) `(0.999)^(1/10)` Let ` f(x) = x ^(1/10) rArrf'(x) = 1/(10x^(9/10))` Let= 1 and h = - `0.001` Now` f(x+h) = f(x) + hf'(x)` `rArrf(0.999) =f(1) - 0.001 xx f'(1)` ` rArr(0.999)^(1/10) = (1)^(1/10) - 0.001 xx 1/(10(1) ^(9/10))` = 1-(0.001)/(10) = 1 - 0.0001` ` = 0.9999` (vi) ` (15)^(1/4)` Let` y = x^(1/4)rArr(dy)/(dx)=1/(4x^(3//4))` Let` x = 16 andx+ Delta x = 15rArr Delta x = - 1` arx = 16 ` y = (16)^(1//4) = 2 ` ` (dy)/(dx) = 1/ (4 (16)^(3//4)) = 1/32` and `Delta y = (dy) / (dx) Delta x = 1/32 (-1) = - 1/32` `:.y + Delta y = 2 - 1/32 = 63/32` ` rArr(15) ^(1//4) = 63/32*` (vii) ` (26)^(1//3)` Let ` f(x) = x^(1/3)rArrf'(x) = 1/(3x^(2/3))` Letx = 27 and h = - 1 Nowf(x+h) = f(x) + hf'(x)` ` rArrf(26) = f(27) - 1 xx f'(27)` ` rArr(26)^(1//3) = (27)^(1//3) - 1/(3(27)^(2/3))` ` = 3- 1/27 = 3- 0.037 = 2.963 = 2.963. (viii)` (255)^(1//4)` Let `f(x) = x^(1/4)rArrf'(x) = 1/(4x^(3/4))` Letx = 256, h = - 1 Now` f(x +h) = f(x) + hf'(x)` `rArrf(255) = f(256) - 1 xx f'(256)` ` rArr (255)^(1//4) = (256)^(1//4 - 1/(4(256)^3/4))` ` = 4-1/(4 xx 64) = 4 - 0.004` (ix) Let` y = x^(1//4)rArr(dy)/(dx) = 1/(4x^(3//4))` Letx = 81andx + ` Delta x = 82rArrDelta x = 1` atx = 81, ` y = 81^(1//4) = 3` ` (dy)/(dx) = 1/ (4(81)^(3//4)) = 1/(108)` and` Delta y = (dy)/(dx) * Delta x = 1/(108) xx 1 = 1/(108)` ` :.y + Delta y = 3 + 1/(108) = (325)/(108)` ` rArr(82)^(1//4) = (325)/(108)` . (x) `(401)^(1//2)` Let` f(x) = x^(1/2) rArrf'(x) = 1/(2X^(1//2))` Let` x= 400 and h = 1` Now` f(x+h) = f(x) + hf'(x)` ` rArrf(401) = f(400) + 1 xx f'(400)` ` rArr(401)^(1//2) = (400)^(1//2) + 1/(2(400)^(1//2))` ` = 20 + 1/40 = 20 + 0.025 = 20. 025` (xi)` (0.0037)^(1//2)` Let` f(x) = sqrtxrArrf'(x) = 1/(2sqrtx))` Let` x= 0.0036 and h = 0.0001` Now` f(x+h)= f(x) + h * f'(x)` ` rArrf(0.0037)= f(0.0036) + 0.0001xx f'(0.0036)` ` rArrsqrt(0.0037) = sqrt(0.0036) + 0.0001 xx 1/(2sqrt(0.0036))` ` = 0.06 + (0.0001)/(2 xx 0.06)` ` =0.06 + 0.0008 = 0.0608` (xii) ` (26.57)^(1//3)` Let`f(x)= x^(1/3)rArrf'(x) = 1/(3x^(2/3))` Let` x= 27andh = - 0.43` Now` f(x+h)= f(x) + hf'(x)` ` rArrf(26.57) = f(27) - 0.43 xx f'(27)` ` = (27)^(1/3) - (0.43 xx 1)/(3 xx (27)^(2/3))` ` = 3- (0.43)/(3 xx 9) = 3 - 0.016` ` = 2.984` (xiii) ` (81.5)^(1//4)` Let ` f(x) = x^(1/4)rArrf'(x) = 1/(4x^(3/4))` Letx = 81and h = `0.5` Now` f(x+h) = f(x) + hf'(x)` `f(81.5) = f(81) + 0.5 f'(81)` ` rArr (81.5)^(1//4) = (81)^(1//4) + (0.5)/(4(81)^(3//4))` `=3+(0.5)/(4 xx 27) = 3 + 0.0046` ` = 3.0046` (xiv) ` (3.968)^(3//2)` Let ` f(x) = x^(3/2)rArrf'(x) = 3/2 x^(1//2)` Letx = 4 andh =- 0.032 Now ` f(x+h) = f(x) + h f'(x)` ` rArrf(3.968) = f(4) - 0.032 xx f'(4)` ` rArr(3.968)^(3/2) = (4) ^(3/2) - 0.032 xx 3/2 xx (4) ^(1/2)` ` = 8- 0.048 xx 2= 8 - 0.096` ` = 7.904` . (xv) ` (32.15)^(1//5)` Let` f(x) = x^(1/5)rArrf'(x) = 1/(5x^(4/5))` Let` x = 32 andh = 0.15` Now` f(x+ h) = f(x) +hf'(x)` ` f(32.15) = f(32) + 0.15 xx f'(32)` ` rArr(32.15)^(1//5) = (32)^(1//5) + 0.15 xx 1/(5 xx (32)^(4/5))` `= 2+(0.15)/(5 xx 16) = 2 + 0.0019` ` = 2.0019` | |