InterviewSolution
Saved Bookmarks
| 1. |
Using Planck's formula, find the power radiated by a unit area of a black body within a narrow wavelength interval Delta lambda = 1.0 nm close to the maximum of spectral radiation density at a temperature T = 3000K of the body. |
|
Answer» Solution :We write the required power in terms of the raadiosity by considering `DEL`only the enegry radiated in the given range. Then form the pervious problem `DELTAP = (c )/(4)overset~~(u)(lambda_(m),T)Delta lambda` `= (4pi^(2)c^(2)cancelh)/(lambda_(m)^(5)) (Delta lambda)/(e^(2ch//klambda_(m)T)-1)` But `lambda_(m)T = b` so `DeltaP = (4pi^(2)c^(2)cancelh)/(lambda_(m)^(5))(Delta lambda)/(e^(2ch//kb)-1)Delta lambda` Using the DATA `(2pic cancelh)/(kb) = (2pixx3xx10^(8)xx1.05xx0^(-34))/(1.38xx10^(-23)xx2.9xx10^(-3)) = 4.9643` `(1)/(e^(2pich//kb)-1) = 7.03xx10^(-3)` and `DeltaP = 0.312W//cm^(2)` |
|