Saved Bookmarks
| 1. |
Using properties of determinant prove that :|(1,1,1),(a,b,c),(bc,ca,ab)| = (a - b)(b - c)(c - a) |
|
Answer» Lat = |(1,1,1),(a,b,c),(bc,ca,ab)| = |(1,0,0),(a,b - a,c - b),(bc,ca - bc,ab - ca)| [By C2 → C2 - C1 and C3 → C3 - C2] = |(1,0,0),(a,-(a - b),-(b - c),(bc,c(a - b),a(b - c)| = (a - b)(b - c)|(1,0,0),(a,-1,-1),(bc,c,a)| [Taking common (a - b) from C2 & (b - c) from C3 = (a - b)(b - c).1(-a + c) = (a - b)(b - c)(c - a) |
|