1.

Verify Lagrange’s mean value theorem for the functions on the indicated intervals. Find a point ‘c’ in the indicated interval as stated by the Lagrange’s mean value theorem:  f(x) = x3 – 2x2 – x + 3 on [0, 1]

Answer»

Given as f(x) = x3 – 2x2 – x + 3 on [0, 1]

The every polynomial function is continuous everywhere on (−∞, ∞) and differentiable for all arguments. Here, f(x) is a polynomial function. Therefore it is continuous in [0, 1] and differentiable in (0, 1). Therefore both the necessary conditions of Lagrange’s mean value theorem is satisfied.

Therefore, there exist a point c ∈ (0, 1) such that:

f'(c) = (f(1) - f(0))/1 - 0

f'(c) = (f(1) - f(0))/1

f (x) = x3 – 2x2 – x + 3

Differentiate with respect to x

f’(x) = 3x2 – 2(2x) – 1

= 3x2 – 4x – 1

For the f’(c), put the value of x = c in f’(x)

f’(c)= 3c2 – 4c – 1

For the f(1), put the value of x = 1 in f(x)

f (1)= (1)3 – 2(1)2 – (1) + 3

= 1 – 2 – 1 + 3

= 1

For the f(0), put the value of x = 0 in f(x)

f (0)= (0)3 – 2(0)2 – (0) + 3

= 0 – 0 – 0 + 3

= 3

∴ f’(c) = f(1) – f(0)

⇒ 3c2 – 4c – 1 = 1 – 3

⇒ 3c2 – 4c = 1 + 1 – 3

⇒ 3c2 – 4c = – 1

⇒ 3c2 – 4c + 1 = 0

⇒ 3c2 – 3c – c + 1 = 0

⇒ 3c(c – 1) – 1(c – 1) = 0

⇒ (3c – 1) (c – 1) = 0

c = 1/3, 1

c = (1/3) ∈ (0,1)

Thus, lagrange's mean value theorem is verified.



Discussion

No Comment Found