Saved Bookmarks
| 1. |
Verify that the function y = a cos x + b sin x is a solution of the differential equation cos(dy/dx) + y sin x = b. dx |
|
Answer» The given function is y = a cos x + b sin x Differentiating both sides with respect to x, we have dy/dx = -a sin x + b cos x Putting values of dy/dx and y in the given differential equation, we have L.H.S. = cos x (- a sin x + b cos x) + {a cos x + b sin x) sin x = – a sin x cos x + b cos2 x + a sin x cos x + b sin2 x = b (cos2 x + sin2 x) = b × 1 = b = R.H.S Thus, y = a cos x + b sin x is a solution of differential equation cos x(dy/dx) + y sin x = b. |
|