1.

Verify that the function y = a cos x + b sin x is a solution of the differential equation cos(dy/dx) + y sin x = b. dx

Answer»

The given function is y = a cos x + b sin x 

Differentiating both sides with respect to x, we have

dy/dx = -a sin x + b cos x

Putting values of dy/dx and y in the given differential equation, we have 

L.H.S. = cos x (- a sin x + b cos x) + {a cos x + b sin x) sin x 

= – a sin x cos x + b cos2 x + a sin x cos x + b sin2 x 

= b (cos2 x + sin2 x) 

= b × 1 = b = R.H.S 

Thus, y = a cos x + b sin x is a solution of differential equation

cos x(dy/dx) + y sin x = b.



Discussion

No Comment Found