1.

Verify that x3 + y3 + z3 – 3xyz = 1/2 (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2 ] (OR) Verify that p3 + q3 + r3 – 3pqr = 1/2 (p + q + r) [(p – q)2 + (q – r)2 + (r – p)2 ]

Answer»

Given x3 + y3 + z3 – 3xyz = 1/2 (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2

R-H.S = 1/2 (x + y + z) [(x – y)2 + (y – z)2 + (z – x)2

= 1/2 (x + y + z) [x2 + y2 – 2xy + y2 + z2 – 2yz + z2 + x2 – 2xz] 

= 1/2 (x + y + z) [2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx] 

= 1/2 (x + y + z) (2) [x2 + y2 + z2 – xy – yz – zx] 

= (x + y + z) (x2 + y2 + z2 – xy – yz – zx) 

= L.H.S 

Hence proved.



Discussion

No Comment Found