

InterviewSolution
Saved Bookmarks
1. |
Viscous force acting between two layers of liquid having area A and velocity gradient (Deltav)/(Deltaz) is given by F = etaA(Deltav)/(Deltaz) . Find dimension of eta. |
Answer» <html><body><p>`M^(1)L^(-2)T^(-2)`<br/>`M^(0)L^(0)T^(0)`<br/>`M^(1)L^(-1)T^(-1)`<br/>`M^(1)L^(2)T^(-2)`<br/></p>Solution :`<a href="https://interviewquestions.tuteehub.com/tag/f-455800" style="font-weight:bold;" target="_blank" title="Click to know more about F">F</a>= <a href="https://interviewquestions.tuteehub.com/tag/etaa-3622529" style="font-weight:bold;" target="_blank" title="Click to know more about ETAA">ETAA</a>(Deltav)/(<a href="https://interviewquestions.tuteehub.com/tag/deltaz-2053564" style="font-weight:bold;" target="_blank" title="Click to know more about DELTAZ">DELTAZ</a>) "" DeltaZ`= distance <br/> `:. <a href="https://interviewquestions.tuteehub.com/tag/eta-446786" style="font-weight:bold;" target="_blank" title="Click to know more about ETA">ETA</a>=(FDeltav)/(ADeltaz) "" DeltaV`= velocity <br/> `:.[eta]=([F][Deltaz])/([A][Deltav])` <br/> `=((M^(1)L^(1)T^(-2))(M^(0)L^(1)T^(0)))/((M^(0)L^(2)T^(0))(M^(0)L^(1)T^(-1)))` <br/> `=M^(1)L^(-1)T^(-1)`</body></html> | |