InterviewSolution
| 1. |
What is Cross-Validation and its relevance in the domain of Machine Learning? |
|
Answer» One of the key steps in building a machine learning model is to estimate its performance on data that the model hasn't seen before. Let's assume that we t our model on a training DATASET and use the same data to estimate how well it performs on new data. A typical model may either suffer from underfitting (high bias) if the model is too simple, or it can overfit if the training data (high variance) if the model is too complex for the underlying training data. To find an acceptable bias-variance trade-off, we need to evaluate our model carefully. In this SECTION, you will learn about the common cross-validation techniques holdout cross-validation and k-fold cross-validation, which can help us obtain reliable estimates of the model's generalization performance, that is, how well the model performs on unseen data. The Holdout Method: A classic and popular approach for estimating the generalization performance of machine learning models is holdout cross-validation. Using the holdout method, we split our initial dataset into a separate training and test dataset—the former is used for model training, and the latter is used to estimate its generalization performance. However, in typical machine learning applications, we are ALSO interested in tuning and comparing different parameter settings to further improve the performance for making predictions on unseen data. A disadvantage of the holdout method is that the performance estimate may be very sensitive to how we partition the training set into the training and validation subsets; the estimate will vary for different samples of the data. The K-fold cross validation Method: In k-fold cross-validation, we randomly split the training dataset into k folds without replacement, where k — 1 folds are used for the model training, and one fold is used for performance evaluation. This procedure is repeated k times so that we obtain k models and performance estimates. We then CALCULATE the average performance of the models based on the different, independent folds to obtain a performance estimate that is less sensitive to the sub-partitioning of the training data compared to the holdout method. Typically, we use k-fold cross-validation for model tuning, that is, finding the optimal hyperparameter values that yields a satisfying generalization performance. Since k-fold cross-validation is a resampling technique without replacement, the advantage of this approach is that each sample point will be used for training and validation (as part of a test fold) exactly once, which yields a lower-variance estimate of the model performance than the holdout method. A GOOD standard value for k in k-fold cross-validation is 10, as empirical evidence shows. For instance, experiments by Ron Kohavi on various real-world datasets suggest that 10-fold cross-validation offers the best trade-off between bias and variance (A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Kohavi, Ron, International Joint Conference on Arti cial Intelligence (IJCAI), 14 (12): 1137-43, 1995). A special case of k-fold cross-validation is the Leave-one-out cross-validation (LOOCV) method. In LOOCV, we set the number of folds equal to the number of training samples (k = n) so that only one training sample is used for testing during each iteration, which is a recommended approach for working with very small datasets. |
|