1.

What is `int (dx)/(sin^(2) x cos^(2) x)` equal to ? where c is the constant of integrationA. `tan x + cot x + c`B. `tan x - cot x + c`C. `(tan x + cot x)^(2) + c`D. `(tan x - cot x)^(2) + c`

Answer» Correct Answer - B
Let `I = int (dx)/(sin^(2) x cos^(2) x) = int ((sin^(2) x + cos^(2) x)dx)/(sin^(2) x cos^(2) x)`
`= int [(sin^(2)x)/(sin^(2) x cos^(2) x) + (cos^(2)x)/(sin^(2) x cos^(2) x)] dx`
`= int [(1)/(cos^(2)x) + (1)/(sin^(2)x)] dx`
`= int (sec^(2) x + "cosec"^(2)x) dx`
`= tan x - cot x + c` where c is constant of Integration


Discussion

No Comment Found

Related InterviewSolutions