1.

What is tan A + sec A equal to?1. \(\rm \tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)2. \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)3. \(\rm 2\tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)4. \(\rm 2\cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)

Answer» Correct Answer - Option 2 : \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)

Concept:

  • sin 2x = 2 sin x cos x
  • cos 2x = cos2 x - sin2 x

 

Calculation:

Consider, tan A + sec A.

\(\rm \frac {\sin A}{\cos A} + \frac {1}{\cos A}\)

\(\rm \frac {\sin A+1}{\cos A}\)

\(\rm \frac {2\sin \frac{A}{2}\cos \frac{A}{2}+\sin^2\frac{A}{2}+\cos^2\frac{A}{2}}{\cos^2 \frac{A}{2}-\sin^2\frac{A}{2}}\)

\(\rm \frac {\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)^2}{\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)}\)

\(\rm \frac {\sin \frac{A}{2}+\cos \frac{A}{2}}{\cos \frac{A}{2}-\sin \frac{A}{2}}\)

Dividing by \(\rm \sin\frac{A}{2}\), we get:

\(\rm \frac {\cot\frac{A}{2}+1}{\cot\frac{A}{2}-1}\)

Using \(\rm \cot\frac{\pi}{4}=1\), it can be written as;

\(\rm \frac {\cot\frac{\pi}{4}\cot\frac{A}{2}+1}{\cot\frac{A}{2}-\cot\frac{\pi}{4}}\)

\(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)



Discussion

No Comment Found

Related InterviewSolutions