InterviewSolution
| 1. |
What is tan A + sec A equal to?1. \(\rm \tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)2. \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\)3. \(\rm 2\tan \left( \frac {\pi} 4 - \frac{A}{2} \right)\)4. \(\rm 2\cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) |
|
Answer» Correct Answer - Option 2 : \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) Concept:
Calculation: Consider, tan A + sec A. = \(\rm \frac {\sin A}{\cos A} + \frac {1}{\cos A}\) = \(\rm \frac {\sin A+1}{\cos A}\) = \(\rm \frac {2\sin \frac{A}{2}\cos \frac{A}{2}+\sin^2\frac{A}{2}+\cos^2\frac{A}{2}}{\cos^2 \frac{A}{2}-\sin^2\frac{A}{2}}\) = \(\rm \frac {\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)^2}{\left(\sin \frac{A}{2}+\cos \frac{A}{2}\right)\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)}\) = \(\rm \frac {\sin \frac{A}{2}+\cos \frac{A}{2}}{\cos \frac{A}{2}-\sin \frac{A}{2}}\) Dividing by \(\rm \sin\frac{A}{2}\), we get: = \(\rm \frac {\cot\frac{A}{2}+1}{\cot\frac{A}{2}-1}\) Using \(\rm \cot\frac{\pi}{4}=1\), it can be written as; = \(\rm \frac {\cot\frac{\pi}{4}\cot\frac{A}{2}+1}{\cot\frac{A}{2}-\cot\frac{\pi}{4}}\) = \(\rm \cot \left( \frac {\pi} 4 - \frac{A}{2} \right)\) |
|